Lecture 2- Nucleic Acid Structure

Forces stabilizing DNA

Van der Waals Interactions

-Electrostatic interaction between two mutually induced dipoles

Lennard-Jones Potential	Atom	B (A ^{6.} kcal/mol)
	Н	46
$\Delta E = \frac{-B}{6} + \frac{A}{12}$	-0-	220
B is a function of polarizability	—ОН	470
	-CH ₂ -	1160
Benzene crystal VdW/ Energy	—s—	3760
-9.9 kcal/mol	—SH	4560

VdW radii (Å)

1.5

1.5

1.5

1.55

1.65

1.85

1.7

1.8

protein or DNA

CH (tet)

CH (tri)

Vai	n der Waals radius	Atom
0 VC	CH_4-CH_4 3.7 Å r $dW \text{ distance} = \Sigma V dW_{radii}$	$RO-H$ $R_{1} R_{2}$ $R_{1} R_{2}$ $R_{1} R_{2}$ $R_{1} R_{2}$ $R_{1} R_{2}$ $R_{1} R_{2}$ $R_{1} R_{3}$

Forces stabilizing DNA Hydrophobic Effect -Describes tendency of hydrophobic molecules to transfer from aqueous phase to organic phase (1) Iceberg-like structure of water around organic solute: All four hydrogen bonds formed/ high ()order-entropic rerdty Н H-O (In liquid water: roughly 1/2 hydrogen bonds formed) -0-H (2) poor polarizability of oxygen organic molecule tends to decreased VdW interaction between water and aggregate in water to organic solute minimize hydrophobic effect also drives hydrophobic effect -Measurement of hydrophobicity is partitioning of molecule between n-octanol and H₂O Solubility in octanol $= P_0$ Solubility in water Solubility in octanol = P Solubility in water ΔG = transfer from n-octanol to water $\Delta G = RT \log P/P_0$ -Energetic contribution due to substituent -R groups have a constant additive effect on hydrophobicity of parent compound in absence of strong resonance/inductive effects Group ∆G (kcal/mol) Group ΔG (kcal/mol) -benzyl 3.6 -CH₄ 0.68 -OH -1.58 -Et 1.36 -propyl 2.05 -1.65 -isopropyl 1.77 1 A² of hydrophobic surface ca. 24 cal/mol stabilization when removed from H₂O -Hydrophobic Effect can be relatively non-specific when molecules bind to

Lecture 2- Nucleic Acid Structure

Forces stabilizing DNA

Electrostatic Interaction

Е

-Proportional to 1/r; Long distance interaction compared to VdW

$$= \frac{e_1 e_2}{D r}$$

D is dielectric constant

-Point charge induces dipoles in solvent which together with counterions induce field to neutralize charge

> D water ~ 80 -1.3 kcal/mol (very small)

D pentane ~ 2 \implies --50 kcal/mol

-So electrostatic interactions are far more important in organic solvent than water.

3.3 Å

Lecture 2- Nucleic Acid Structure

